

Didactic and methodological notes for:

Submodule 2: Problem solving on a solar thermal system

Goal of the Submodule 2

Objective:

In this submodule, the effects of too frequent stagnation (corrosive heat transfer medium = water-glycol mixture) in a solar thermal system are discussed using the example of a fixed solar pump. From this problem, the students derive possible measures for the customer to avoid stagnation.

Introduction scenario:

In the meantime, the solar thermal system has been fully installed, tested for function and put into operation. After one year, you carry out maintenance on the solar thermal system.

You realise that the solar pump is malfunctioning (see message below!). When removing the pump, you notice that the pump is stuck and that the solar fluid has changed considerably. The pH value of the solar fluid has dropped to pH=4.

When asked, the customer describes the operation of the system since commissioning:

- The first summer was very warm with many hours of sunshine. On many summer days, there was more solar heat available than the customer could use. The system therefore often switched off even though the sun was shining.
- The following winter, there were very few hours of sunshine, so the system was not in operation over the winter months.

Your job is to describe to the customer in writing how the poor condition of the system could have come about. You also give the customer a list of tips on how to minimise these problems in the future.

Target groups EQF level 3-4:

Students

mechanic

Competence profile related to the VQTS-Matrix				
Competence	Competence development	Level	vel Interdisciplinary / cross-disciplinary	
areas	steps		competences	
Maintain	✓ He/She can operate	EQF 3-4	✓ The student can link the effects	
building	components of building		of corrosion in the solar circuit	
systems or	systems according to the		with different operating states	
their	specifications and check		of the solar thermal system.	
components	their function.		✓ The students can give the	
	✓ He/she can carry out		customer recommendations	
	inspection, maintenance		on user behaviour that	

		and repair work on components of building systems in accordance with the manufacturer's instructions [].			improve the operating behaviour of the solar thermal system and avoid/reduce stagnation
Communicat ion across trades, also in foreign languages	✓ ✓	basic technical terms of his/her own and other professions.	EQF 3-4	✓ ✓	Students can formulate suitable measures for the customer (layperson) using technical terms. The students can give selfconfident feedback.

Competence profile related to the matrix for sustainable thinking and acting			
Competence area	Competence development steps		
Energy saving: Expertise in identifying and	✓ He/she identifies basic measures to reduce		
applying practices to reduce energy	energy consumption in specific activities.		
consumption, with the aim of reducing			
environmental impact and associated costs.			
Environmental compliance: Enables him/her to	✓ He/she understands and follows basic		
know, apply and ensure compliance with the	environmental regulations that apply to		
rules and regulations related to environmental	his/her daily activities.		
protection in his/her work activities.			
Material Saving Instructions: Follows and	✓ He/she optimises the use of materials		
applies instructions aimed at reducing the	through specific instructions and adapts		
unnecessary use of materials to promote the	working practices to minimise		
responsible and efficient use of available	consumption.		
resources.			
Hazardous waste disposal: Enables the	✓ He/she identifies and classifies hazardous		
identification, classification and safe handling of	waste and follows handling procedures		
hazardous waste in compliance with established	under supervision.		
regulations and to minimise health and			
environmental hazards.			

Interdisciplinary collaboration: working efficiently in multidisciplinary teams, working with professionals from different fields to achieve common goals in terms of sustainability and environmental improvement.

- He/she works with others on basic tasks and understands the importance of working together to achieve sustainable goals.
- He/she coordinates and works in multidisciplinary teams.

Country	Where can the module be implemented in your national curriculum?
Germany	Vocational training for learning field 9 (installation of drinking water heating systems)
Finland	A unit based on local competences. The training provider defines the requirements for vocational competence and the assessment of competence in a similar way to the vocational units.
Spain	Heat-generating systems, installation and maintenance of solar energy systems.

In which way does the module enrich the content of one profession with qualification requirements from previously unrelated areas? (Describe in bullet points)

- ✓ Students understand the functional relationships between user behaviour and the operating states of the solar thermal system in order to derive suitable behavioural recommendations for the customer.
- ✓ Learners can assess the consequences of stagnation on the individual components of the solar thermal system.
- ✓ Learners communicate effectively with trainees from other professions.

Training plan Submodule 1				
		Duration		
		/		
Title of the lessons	Competences	volume	Comments	
/ individual		in		
		training		
		hours		
Introduction and			Agreement on the scope and	
introduction to			quality of the product to be	
the learning			created.	
situation		90 mins		
Information phase	✓ The students know the		The learners examine the	
	consequences of strong		information material and use it	
	solar radiation on the solar		to acquire the knowledge	
	collector without sufficient			

	utilisation or storage of the solar heat. ✓ Students can assess the effects of various weather influences on the overall system.		required to assess the effects of stagnation on the overall system.
Product creation	 ✓ The students summarise the previously learned content in a short description for the customer. ✓ The students link the effects of the weather and solar radiation on the heat transfer medium of the solar thermal system and derive sensible recommendations for action for the customer. 	60 mins	✓ In the written summary, common technical terms are used for the customer and formulated in a way that the customer can understand. ✓ The students' work should show a connection between the unused solar heat, the poor condition of the system and user behaviour.
Presentation	✓ The students can evaluate the product quality of the other groups and make constructive suggestions for improvement and further solutions.	30 mins	✓ The products are presented in plenary. The non-presenting groups evaluate the presented checklist and give constructive feedback.
Valuation			✓ The products are evaluated by the teacher with regard to the technical correctness and usefulness of the proposed changes in user behaviour for the customer.
Reflection / Evaluation	✓ The students apply their new knowledge to create a joint checklist with the whole class.	90 mins	 ✓ The students check their newly acquired specialist knowledge when drawing up the joint checklist. ✓ The last uncertainties are discussed and the last gaps in knowledge are closed.

Description of the tasks for competence assessment

The assessment of competence growth can take the form of a written examination or be assessed by evaluating the written products. This can also be done in combination with the main module and sub-modules 1 and 2 of this series of lessons on solar thermal energy.

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

Co-funded by

