

Didactic and methodological notes for:

Module 2: Customer request for a photovoltaic system

Goal of the module (description of the module idea, aims and target groups in a few sentences)

The learning module targets learners from different trades, primarily roofers and electricians. It is designed for a period of ten lessons of 60 - 90 minutes duration. The training program aims at students which are at EQF Level 2 of the beginning of the training and at EQF Level 4 at the end of the training. The module is best held at the mid to the end of the training program.

The module focusses on a request for customer advice on the installation of a photovoltaic system (pv-system).

To successfully complete the learning module, skills from different professions are required. For this reason, the traditional skills of one trade are supplemented by skills from other trades. These are specific to this module:

- <u>Roofers:</u> Working with hazardous voltages. Components of a pv-system and their functions. Assembly of electrical components.
- <u>Electricians:</u> Working at heights with regards to safety and protection gear. Roof construction and where to move safely. Assembly of pv-panels on roof tiles.

Competence profile related to the VQTS-Matrix			
Competence	Competence devolpment	Level	Interdisciplinary / cross-
areas	steps		disciplinary competences
Assembly,	He/she can assemble and	EQF Lv. 4	
disassembly and dis-	disassemble com-		
posal of building	ponents of building systems		
systems and	according to ex-		

their compensation	inting appendix and installation		
their components	isting assembly and installation		
	plans and in		
	compliance with applicable		
	standards, regula-		
	tions, and laws.		
	He/she can professionally separate		
	compo-		
	nents and building materials while		
	the dis-		
	posal of building systems.		
	He/she can plan and document the		
	assembly		
	and disassembly of components of		
	building		
	systems according to customer		
	specifications		
	and in coordination with authorities,		
	archi-		
	tects, and system manufacturers,		
	considering		
	legal requirements.		
	He/she can dispose of the		
	professionally sep-		
	arated components and building		
	materials of		
	building systems in accordance		
	with legal reg-		
	Ulations.		
	Glations.		
	Halaha ana astimata walda ala		
	He/she can estimate workloads		
	and report		
	possible problems to superiors.		
Cost control and	He/she can determine and	5051 4	
monitoring for the	document basic	EQF Lv. 4	
_			
life cycle of a building	data for tracking cost of building		
system	systems in		
	accordance with guidelines.		
Communication	He/she can understand basic	FOE 1 4	
across trades,	technical terms	EQF Lv. 4	
across daucs,	of his/her own and other trades.		
	or morner own and other trades.		

also in foreign		
languages	He/she can conduct conversations	
	with supe-	
	riors and employees of his/her	
	own and other	
	trades and customers in an	
	appropriate man-	
	ner while presenting and	
	explaining facts.	
	He/she can read product data	
	sheets and	
	carry out assembly and operating	
	instructions	
	of his/her own and other trades.	

Competence profile related to the matrix for sustainable thinking and acting			
Competence area	Competence devolopment steps		
Energy conservation: competence	He/She leads the implementation of energy		
related to the identification and	conservation systems, developing initiatives		
application of practices to reduce energy	that optimise consumption in installations and		
consumption, with the aim of reducing	maintenance processes.		
environmental impact and associated			
costs.			
Energy efficiency practices involves the	He/She identifies opportunities to improve		
knowledge and application of techniques	energy efficiency in projects and implements		
to reduce energy consumption,	them in his/her work.		
promoting practices that optimise			
efficiency and reduce waste.			
Evaluation of energy alternatives and	He/She evaluates and selects appropriate		
cost reduction: analyse different energy	energy alternatives to reduce costs and		
alternatives, assess their feasibility and			

efficiency, and develop	improve environmental performance in their
recommendations for cost reduction and	tasks.
improved environmental performance.	
Interdisciplinary collaboration: working	He/She works with others on basic tasks,
effectively in multidisciplinary teams,	understanding the importance of collaboration
collaborating with professionals from	to achieve sustainable goals.
different areas to achieve common goals	
related to sustainability and	
environmental improvement.	

Co-funded by the European Union

Country	Where can the module be implemented in	
	your national curriculum?	
Germany	Dachdecker/In - Lernfeld 16.	
	Elektroniker für Energie- und	
	Gebäudetechnik - Lernfeld 11.	
	Elektroniker für Betriebstechnik –	
	Lernfeld 11	
Netherlands	Monteur elektrotechnische	
	installaties gebouwde omgeving	
	Eerste monteur elektrotechnische	
	installaties gebouwde omgeving	
	Technicus elektrotechnische	
	installaties in de gebouwde	
	omgeving	
	Eerste monteur woning	

In which way does the module enrich the content of one profession with qualification requirements from previously unrelated areas? (Describe in bullet points)

- The module enriches eletricians' training with the perspective of working at heights and specifically on roofs of buildings.
- The module enriches roofers' training with the aspect of working with hazardous voltages and general principles of electronics.
- It introduces new safety rules and protective gear to both electricians and roofers.
- The module introduces sustainable aspects like carbon emission reduction to the current curriculums.

 It enriches roofers' training by the aspect of calculating energy yield and dealing with aspects which lead to reduced output power.

Training plan				
Title of the lessons / individual units	Competences	Duration / volume in training hours	Comments	
1. Analysis of the	The students learn	60 – 90 Minutes		
customer request.	to analyze the			
	customers needs			
	and expectations			
	and deduct a			
	working plan from			
	that.			
2. Output power and	Students learn how	60 – 90 Minutes		
beneficial factors for	to calculate output			
output power.	power of a			
	photovoltaic system.			
	They will also learn			
	about factors which			
	will reduce and also			
	increase output			
	power in a wa that			
	they are able to			
	estimate output			

	power for other pv-		
	systems.		
3. Components of a	Students learn about	60 – 90 Minutes	
photovoltaic system.	the components		
	needed for a		
	photovoltaic system		
	and their specific		
	function within the		
	system.		
4. Risks while working	Students learn how	60 – 90 Minutes	
and appropriate	to assess risks while		
safety measures.	working and to		
	prepare with safety		
	and counter		
	measures.		
5. Installation process	Students learn	60 – 90 Minutes	This is an optional
and needed tools.	effectively how to		lesson.
	install parts of		
	photovoltaic		It depends on the
	systems and how to		institution you are
	assemble pv-panels.		teaching at whether
			you can conduct
			such a practical
			approach or not.
6. Connecting the PV	Students learn how	60 – 90 Minutes	This is an optional
system to the grid.	to connect the		lesson.
	isolated pv-system		
		•	

	to the public grid.		It depends on the
	They will also learn		institution you are
	about regional laws		teaching at whether
	and reulations when		you can conduct
	connecting energy		such a practical
	supplies to the		approach or not.
	public grid. Students		
	learn how to draw		
	schematic diagrams		
	of simple systems.		
7. Calculating cost	Students learn to	60 – 90 Minutes	
and amortization	calculate cost of a		
time.	photovoltaic system		
	and the time it takes		
	for the system to		
	amortize. Further		
	students learn how		
	to vet pv-systems for		
	rentability.		
8. Comparison of	Students learn about	60 – 90 Minutes	
photovoltaic systems	the problems of		
and fossile fuels in	fossile fuels (carbon		
terms of carbon	emission, climate		
footprints and the	change and scarcity)		
future.	and compare carbon		
	footprints of pv-		
	systems with		
	footprints of fossile		
	<u> </u>	İ	

	fueled systems. They		
	will further learn		
	about aspects of		
	sustainability and		
	recycling during the		
	lifespan of a pv-		
	system.		
9./10. Preparing	Students learn how	60 – 90 Minutes	
presentation/pitch	to visualize and		
and giving	convey information.		
presentation.	Creativity is		
	supported in the		
	way that the final		
	product is of		
	students choice.		
*11. Final exam.	This is the	60 – 90 Minutes	The final exam is not
	assesssment for the		necessarily needed
	learning process		as the portfolio can
	throughout the		already be taken
	module.		into account for the
			asssessment of a
			student's work.

Description of the tasks for competence assessment

Lesson 1:

- Clearly describe the assignment and the client's expectations.
- Identify three reasons why solar energy and safety are important.

• Explain how a photovoltaic system affects costs and environmental impact.

Lesson 2:

- Analyze the roof orientation and determine the optimal placement for solar panels.
- Calculate the potential power output based on the available roof surface and tilt angle.
- Describe how weather conditions and shading affect solar panel performance.

Lesson 3:

- Create a poster or visual overview of the components (panels, inverter, mounting system, cabling, and connection to the electrical panel).
- Describe the function of each component and how they work together in the system.
- Explain which components are required for the scenario and why.

Lesson 4:

- Identify and describe at least three risks associated with working at heights.
- Develop a plan with appropriate safety measures and required protective equipment.
- Explain how the use of sustainable materials can enhance safety.

Lesson 5:

- Describe step by step how to install a PV system.
- Specify which materials and tools are required.

Lesson 6:

- Design an electrical diagram for grid integration.
- Describe the safety regulations and procedures.

Lesson 7:

• Calculate the total costs and payback period of the customer's PV system.

Lesson 8:

• Compare the CO₂ savings of solar panels with fossil fuels.

Lesson 9/10:

 Prepare a professional presentation that convinces the customer of the benefits of solar energy.

- Choose an appropriate presentation format (e.g., video, brochure, conversation).
- Justify the proposed solution with calculations and scenario-specific data.
- Respond to potential customer questions or objections.
- Check your own learning process with the "can-do-checklist" and see if you have trained all
 competences needed in this module

